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Abstract –Globally Cardiovascular diseases (CVDs) rank among the top causes of death. Electrocardiogram (ECG) readings provide vital information necessary for diagnosing heart ailments. Techniques in Machine Learning (ML) and Deep Learning (DL) have transformed the automatic identification and categorization of CVDs from ECG images. This paper offers a detailed overview of ML and DL approaches utilized in CVD detection, highlighting various algorithms, datasets, and performance metrics. It can be used in future research for challenges and potential in this area. The study underscores the efficacy of convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid models in improving diagnostic accuracy.
Keywords -Cardiovascular Disease, electrocardiogram, Machine Learning, Deep Learning, Neural Networks, Automated

INTRODUCTION
Cardiovascular diseases (CVDs) pose a significant burden on healthcare systems worldwide, accounting for nearly 32% of global deaths annually. Identifying and preventing cardiovascular diseases (CVDs) at an early stage can greatly lower rates of death and illness. Electrocardiography (ECG) is still one of the most widely utilized diagnostic methods because of its non-invasive characteristics and capacity for real-time 

observation of heart-related issues. However, manual interpretation of ECG signals is prone to inter-observer variability and human error, necessitating automated techniques for reliable and consistent diagnosis.

Machine learning (ML) and deep learning (DL) methodologies have become significant resources in the healthcare sector, especially for the detection of cardiovascular diseases (CVD) through ECG analysis. Conventional ML techniques like Support Vector Machines (SVM),k-Nearest Neighbors (k-NN) and Random Forest (RF),  have been utilized for both feature extraction and classification tasks. These models depend on manual feature engineering, where knowledge from the domain is vital in choosing the most pertinent features for effective classification. Nonetheless, these approaches may face challenges in generalizing across varied datasets due to differences in ECG recordings, patient characteristics, and the presence of noise in actual data scenarios.

Deep Learning (DL), especially Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs),has shown outstanding effectiveness in managing intricate ECG patterns. CNNs automatically extract spatial features, decreasing reliance on specialized knowledge, whereas Long Short-Term Memory (LSTM) and RNNs networks are adept at examining temporal relationships in ECG signals, making them well-suited for analyzing sequential data. The use of hybrid models that combine CNNs with LSTMs has further enhanced classification precision by utilizing both spatial and temporal data.

The implementation of machine learning and deep learning in the detection of cardiovascular diseases (CVD) has resulted in considerable progress; however, issues like data imbalance, model interpretability, and computational efficiency continue to exist. This paper intends to offer a comprehensive overview of current techniques for CVD detection utilizing ECG signals, examine their advantages and disadvantages, and investigate possible remedies for the prevailing challenges
 
LITERATURE REVIEW

A. Traditional Machine Learning Techniques

Initial methods for automated ECG classification focused on manual feature extraction alongside conventional machine learning techniques. Techniques such as Principal Component Analysis (PCA), Wavelet Transform, and Mel-Frequency Cepstral Coefficients (MFCC) have been employed to convert raw ECG data into a format conducive for classification. Acharya et al. [1] presented a deep CNN model for classifying heartbeats, attaining notable increases in accuracy compared to traditional statistical approaches.

Various machine learning algorithms has been investigated for the classification of ECG signals, such as:
1. Support Vector Machines (SVMs): These classifiers work well in high-dimensional spaces and are effective for binary classification tasks. However, they need precise adjustment of kernel functions and hyperparameters to reach peak performance.
 2. Random Forest (RF): RF classifiers build numerous decision trees using ensemble learning, then aggregate the results. RF is robust to overfitting and provides better interpretability than deep learning models.
3. k-Nearest Neighbors (k-NN) : The k-Nearest Neighbors (k-NN) algorithm is a straightforward method that uses the similarity of ECG signals to the closest k training samples to classify them. While effective for small datasets, k-NN is computationally expensive for large-scale ECG data. 
Arghandabi & Shams [2] compared various ML techniques such as Decision Trees, Random Forest, and k-NN, demonstrating that ensemble-based methods often outperform individual classifiers in ECG-based CVD detection. However, traditional ML models rely heavily on feature engineering, which may not always generalize well across different datasets and patient populations
B. Deep Learning Techniques
CNNs are extensively used for ECG classification because they automatically extract hierarchical spatial characteristics from ECG waveforms. Deep learning has transformed ECG analysis by allowing for end-to-end learning without human feature extraction.. Bao et al. [3] proposed a time-frequency-based CNN model for detecting abnormal heart sounds, showing that deep architectures can effectively capture spatial and temporal ECG characteristics.
Long Short-Term Memory (LSTM) networks, a kind of recurrent neural networks (RNNs), have also become more and more popular for ECG interpretation. Unlike CNNs, which focus on spatial features, RNNs process sequential data and are capable of capturing temporal dependencies in ECG signals.Baral et al. [4] introduced a bidirectional LSTM model for early cardiac arrest prediction, demonstrating improved sensitivity and specificity compared to traditional ML techniques. This strategy enables the model to learn from both past and future time steps, making it more effective at identifying complex cardiac rhythms.
Hybrid models that combine CNNs with LSTMs have shown promising results in ECG classification. These models leverage the feature extraction capabilities of CNNs while utilizing LSTMs for capturing temporal dependencies. For instance, Dutta et al. [5] demonstrated that integrating CNNs with LSTMs enhances performance by capturing both spatial and temporal patterns in ECG signals.
Although they offer numerous benefits, deep learning models encounter various challenges:

1. Data Requirements: To attain high accuracy, deep learning models need sizable labeled datasets. However, publicly available ECG datasets are frequently small in size, making it challenging to train reliable models.
2. Computational Complexity: Deep learning models are not as applicable in real-time clinical situations due to the high computational resources needed for training.

3. Lack of Interpretability: Deep learning models are opaque, making it challenging for clinicians to understand their decision-making processes. Explainable AI approaches, such as attention processes and saliency maps, are being investigated to improve model interpretability.
Despite these issues, deep learning continues to hold significant potential for ECG-based CVD screening. Future research should be on creating interpretable and computationally efficient models that may be used in real-world clinical situations.

METHODOLOGY

[bookmark: _ljnuvcnraz51]This part describes the approaches employed to identify cardiovascular diseases (CVDs) by utilizing electrocardiogram (ECG) images alongside machine learning (ML) and deep learning (DL) techniques. The methodology consists of several critical steps: data collection, preprocessing, feature extraction, model selection, training, performance evaluation, and implementation. In addition, a comparison of traditional ML and DL methodologies is offered, accompanied by graphs depicting their respective workflows.

A. Data Collection and Preprocessing
[bookmark: _ng9rd22o91o]1. Data Sources
ECG signals are sourced from widely used, publicly available datasets, including:
· MIT-BIH Arrhythmia Database: A dataset containing annotated ECG signals from patients with diverse cardiac conditions [6].
· PTB Diagnostic ECG Database: Utilized for the classification of myocardial infarction and broader CVD detection [7].
· MIMIC-III Waveform Database: A comprehensive repository of ECG signals collected from intensive care unit (ICU) patients [8].
[bookmark: _ab046ya7n99m]2. Preprocessing Methods
Unprocessed ECG signals frequently have noise and artifacts that can disrupt accurate classification. Preprocessing techniques include:
· Filtering: Noise removal using digital filters such as Butterworth and Chebyshev to eliminate baseline drift and electrical interference.
· Normalization: Standardization of ECG amplitude values to maintain uniformity across datasets.
· Segmentation: ECG waveforms are divided into individual heartbeats using algorithms like Pan-Tompkins for R-peak detection [9].

[bookmark: _mehv62lort9w]B. Feature Extraction and Selection
[bookmark: _bke14hyofs7f]For classification to be effective, pertinent features must be extracted from ECG signals.
1. Time-Domain Features
· RR Interval: The time between consecutive R-peaks, an essential measure for heart rate variability.
· P-wave and T-wave Duration: Useful for detecting arrhythmias and abnormalities in cardiac cycles.
[bookmark: _exfu3n29q2mx]2. Frequency-Domain Features
· Wavelet Transform: Decomposes ECG signals into various frequency components for better pattern recognition [10].
· Mel-Frequency Cepstral Coefficients (MFCCs): Use Mel-Frequency Cepstral Coefficients (MFCCs) to extract spectrum properties helpful for deep learning models [11].
[bookmark: _j4v70zi8rj61]3. Feature Selection Techniques
To reduce redundancy and enhance model efficiency, feature selection methods like Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE) are implemented [12].

[bookmark: _tuw3gioxdo3w]C. Machine Learning-Based Approaches
Traditional ML models depend on extracted features for classification. Some widely used algorithms include:
[bookmark: _d47ujp1fb4nj]1. Support Vector Machines (SVMs)
· Support Vector Machines (SVMs) are good at processing high-dimensional data, but for best results, the right kernel selection is needed..
· Works well for distinguishing between normal and abnormal ECGs.
[bookmark: _iot1mc29i2k]2. Random Forest (RF)
· Multiple decision trees are used by Random Forest (RF) to increase resilience and decrease overfitting..
· More stable compared to single decision-tree classifiers [13].
[bookmark: _3uuodcn46bfi]3. k-Nearest Neighbors (k-NN)
· Categorizes ECG signals based on similarity to stored training samples.
· Computationally expensive when dealing with large datasets.

[bookmark: _pds4lbqc8hz]D. Deep Learning-Based Approaches
DL models automate feature extraction and classification, offering superior accuracy over traditional ML approaches.
[bookmark: _xle9rwvj2195]1. Convolutional Neural Networks (CNNs)
· CNNs capture spatial features from ECG images, improving classification performance.
· Common architectures include LeNet, ResNet, and Inception [14].
[bookmark: _wfuzxwyuyaaw][bookmark: _ottk2ope8pgo]2. Long Short-Term Memory network (LSTM)  and recurrent neural networks (RNNs)
· Designed for sequential ECG data interpretation.
·  LSTMs address problems such as vanishing gradients observed in conventional RNNs [15]
3. Hybrid CNN-LSTM Models
· LSTMs handle temporal dependencies, whereas CNNs extract spatial characteristics.
· Enhances arrhythmia detection and classification of complex cardiac conditions.

[bookmark: _9x4e3ebxoljv]E. Comparison of ML and DL Models
The table below highlights the differences in feature extraction, accuracy, computational demands, and interpretability of ML and DL models in ECG-based CVD classification.
F. Model Training and Evaluation

Tabel 1-Comparison of ML and DL Models
	Model
	Feature Extraction
	Accuracy (%)
	Computation Time
	Interpretability

	SVM
	Manual
	85
	Low
	High

	RF
	Manual
	88
	Medium
	High

	k-NN
	Manual
	84
	High
	High

	CNN
	Automated
	92
	High
	Low

	LSTM
	Automated
	94
	High
	Low

	CNN-LSTM
	Automated
	96
	Very High
	Medium


1. Methodology for Training
The Adam optimizer with hyperparameter tuning is used to optimize models.For multi-class classification problems, loss functions like cross-entropy loss are used.
2. Measures of Evaluation
Performance is assessed using F1-score, recall, accuracy, and precision. Receiver Operating Characteristic (ROC) curves quantify how well the model can differentiate across various classes.
.
[bookmark: _as9s4wz4asfj]G. Deployment Considerations
· Cloud-Based Implementation: Real-time ECG classification using cloud computing services such as TensorFlow Serving.
· Edge AI Deployment: Deploying lightweight models on portable ECG monitoring devices for remote patient monitoring.
[bookmark: _u0mfzdt0zd52]H. Challenges and Future Research Directions
1. Data Imbalance: Techniques such as Synthetic Minority Over-Sampling Technique (SMOTE) help address class imbalance [16].
2. Computational Efficiency: Reducing complexity through model pruning and quantization enhances real-time applicability.
3. Explainability in AI Models: Techniques such as Grad-CAM and SHAP improve model transparency for better clinical trust [17].

RESULT & DISCUSSION
Comparative analysis of different ML and DL techniques indicates that deep learning models consistently outperform traditional ML approaches in ECG classification.
· CNN vs. ML Methods: CNN-based models are more accurate because they can recognize spatial hierarchies in ECG signals. For instance, Bao et al. [5] showed that CNNs significantly improved classification performance compared to traditional feature-based ML models.
· RNN vs. LSTM: Recurrent Neural Networks (RNNs) are effective but experience problems with vanishing gradients. LSTMs mitigate this by maintaining long-term dependencies, leading to improved results in studies such as Baral et al. [6].
· Hybrid Models: Combining CNNs with RNNs/LSTMs has been shown to enhance classification accuracy further. Dutta et al. [10] demonstrated that hybrid models outperform standalone CNNs by incorporating temporal dependencies.
Challenges remain, including computational complexity, data imbalance, and lack of interpretability. The optimization of models for real-time clinical applications should be the main goal of future research.

CONCLUSION

Machine learning and deep learning have significantly advanced ECG-based CVD detection. CNNs and RNNs have proven effective, with hybrid models showing further improvements. Real-world application, however, requires addressing issues like data quality, computing efficiency, and model interpretability. Future directions include improving model robustness, developing explainable AI techniques, and enhancing dataset diversity for better generalization.
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